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I. Introduction

Current and next generation processor designs require exploit-
ing on-chip, fine-grained parallelism to achieve a significant
fraction of theoretical peak CPU speed. The success or fail-
ure of these designs will have a tremendous impact on the
performance and scaling of a number of key reactor physics
algorithms run on next-generation computer architectures. One
key example is the Monte Carlo (MC) method for neutron
transport. MC methods are characterized by complex memory
access patterns that heavily tax shared resources of multi-core
memory hierarchies. In this analysis we study in depth the on-
node scaling properties and memory contention issues of MC
particle transport specifically for reactor physics calculations.

There has been significant research into the performance
and scaling of MC particle transport algorithms on distributed
memory, High Performance Computing (HPC) systems.(1)(2)

One such effort, the OpenMC transport code,(1) has investigated
scaling on many-node distributed memory architectures, such
as Blue Gene/P. However, there is little reported on the per-
formance of such applications on multi-core, shared memory
architectures. At least one recent study does provide a compre-
hensive view of on-node scaling behavior at the algorithmic
level but does not go into great depth on the underlying architec-
tural causes of scaling degradation.(3) This is notable as there
are significant memory contention issues in multi-core scaling
that are not present on distributed memory architectures. Typi-
cal(3) multi-core scaling for the MC particle transport algorithm
is shown in Figure 1.

To investigate scaling and performance issues of robust,
quasi-static nuclide depletion calculations (i.e., where hundreds
of nuclides are present in the fuel region and performance is
dominated by macroscopic cross section calculations), such as
are performed by OpenMC, we abstract a key computational
kernel that is responsible for the majority of the algorithm’s
runtime and implement it in the form of the “proxy application”
XSBench. The end result is that the essential computational
conditions and tasks of fully featured MC transport codes are
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Figure 1: OpenMC Performance Scaling on a 16-Core Xeon Node

retained in the kernel, without the additional complexity of
the full application. This provides a much simpler and more
transparent platform for isolating where both hardware and soft-
ware bottlenecks inhibit scaling of the algorithm. We then use
and modify our extracted kernel to identify low-level hardware
and software bottlenecks on an Intel Xeon system, so that we
can make an intelligent prediction as to how the MC transport
algorithm will scale on next generation, many-core systems.

1. The Reactor Simulation Problem

Computer-based simulation of nuclear reactors is a well estab-
lished field, with origins dating back to the early years of digital
computing. Traditional reactor simulation techniques aim to
solve the diffusion equation for a given material geometry and
starting (source term) neutron distribution within the reactor.
This is done in a deterministic fashion using well developed
numerical methods. Deterministic codes are capable of running
quickly and providing precise solutions, however, there are
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other approaches to the problem that offer potential advantages.

An alternative method, Monte Carlo (MC) simulation, sim-
ulates the path of a particle neutron as it travels through the
reactor core. As many particle histories are simulated, a picture
of the full distribution of neutrons within the reactor core is de-
veloped. Such codes are inherently simple, easy to understand,
and potentially easy to rethink when moving to new, novel
architectures. Furthermore, the methodologies utilized by MC
simulation require very few assumptions, resulting in highly
accurate results assuming adequate statistical convergence. The
downside to this method, however, is that a huge number of
neutron histories must be run in order to achieve an acceptably
low variance in the results. For many problems this means an
impractically long time-to-solution, though such limitations
may be overcome given the increased computational power of
next-generation, exascale supercomputers.

2. OpenMC

OpenMC is a Monte Carlo particle transport simulation code
focused on neutron criticality calculations.(1) It is capable of
simulating 3D models based on constructive solid geometry
with second-order surfaces. The particle interaction data is
based on ACE format cross sections, also used in the MCNP
and Serpent Monte Carlo codes. OpenMC has been used to in-
vestigate scaling concerns on distributed memory architectures,
such as the IBM Blue Gene/P and Blue Gene/Q.

OpenMC was originally developed by members of the Com-
putational Reactor Physics Group at the Massachusetts Institute
of Technology starting in 2011. Various universities, labora-
tories, and other organizations (including CESAR) now con-
tribute to the development of OpenMC.

3. XSBench

The XSBench proxy application models the most computation-
ally intensive part of a typical MC transport algorithm – the cal-
culation of macroscopic neutron cross sections, a kernel which
accounts for around 85% of the total runtime of OpenMC.(3) XS-
Bench retains the essential performance-related computational
conditions and tasks of fully featured reactor core MC neutron
transport codes, yet at a fraction of the programming complex-
ity of the full application. Particle tracking and other features
of the full MC transport algorithm were left out of XSBench as
they take up only a small portion of runtime. This provides a
much simpler and far more transparent platform for testing the
algorithm on different architectures, making alterations to the
code, and collecting hardware runtime performance data.

XSBench is in active development by members of the Center
for Exascale Simulation of Advanced Reactors (CESAR) at
Argonne National Laboratory. The application is written in
C, with multi-core parallelism support provided by OpenMP.
XSBench is an open source software project. All source code is
publicly available online.

II. Algorithm

1. Reactor Model

When carrying out reactor core analysis, the geometry and
material properties of a postulated nuclear reactor must be spec-
ified in order to define the variables and scope of the simulation
model. For the purposes of XSBench, we use a well known com-
munity reactor benchmark known as the Hoogenboom-Martin
model.(4) This model is a simplified analog to a more complete,
“real-world” reactor problem, and provides a standardized basis
for discussions on performance within the reactor simulation
community. XSBench recreates the computational conditions
present when fully featured MC neutron transport codes (such
as OpenMC) simulate the Hoogenboom-Martin reactor model,
preserving a similar data structure, a similar level of random-
ness of access, and a similar distribution of FLOPs and memory
loads.

2. Neutron Cross Sections

The purpose of an MC particle transport reactor simulation is
to calculate the distribution and generation rates of neutrons
within a nuclear reactor. In order to achieve this goal, a large
number of neutron lifetimes are simulated by tracking the path
and interactions of a neutron through the reactor from its birth
in a fission event to its escape or absorption, the latter possibly
resulting in subsequent fission events.

Each neutron in the simulation is described by three primary
factors: its spatial location within a reactor’s geometry, its
speed, and its direction. At each stage of the transport calcula-
tion, a determination must be made as to what the particle will
do next. Possible outcomes include uninterrupted continuation
of free flight, collision, or absorption (possibly resulting in
fission). The determination of which event occurs is based on a
random sampling of a statistical distribution that is described
by empirical material data stored in main memory. This data,
called neutron cross section data, represents the probability
that a neutron of a particular speed (energy) will undergo some
particular interaction when it is inside a given type of material.
To account for neutrons across a wide energy spectrum and
materials of many different types, the data structure that holds
this cross section data must be very large. In the case of the
simplified Hoogenboom-Martin benchmark roughly 5.6 GB1

of data is required.

3. Data Structure

A material in the reactor model is composed of a mixture of
nuclides. For instance, the “reactor fuel” material might con-
sist of several hundred different nuclides, while the “pressure
vessel side wall” material might only contain a dozen or so. In
total, there are 12 different materials and 355 different nuclides
present in the modeled reactor. The data usage requirements to
store this model are significant, totaling 5.6 GB, as summarized
in Table 1.

1We estimate that for a robust depletion calculation, in excess of 100 GB of
cross section data would be required.(5)
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For each nuclide, an array of nuclide grid points are stored
as data in main memory. Each nuclide grid point has an energy
level, as well as five cross section values (corresponding to five
different particle interaction types) for that energy level. The
arrays are ordered from lowest to highest energy levels. The
number, distribution, and granularity of energy levels varies
between nuclides. One nuclide may have hundreds of thou-
sands of grid points clustered around lower energy levels, while
another nuclide may only have a few hundred grid points dis-
tributed across the full energy spectrum. This obviates straight-
forward approaches to uniformly organizing and accessing the
data.

In order to increase efficiency of access, the algorithm utilizes
another data structure, called the unionized energy grid, as
described by Leppänen(6) and Romano.(1) The unionized grid
facilitates fast lookups of cross section data from the nuclide
grids. This structure is an array of grid points, consisting of an
energy level and a set of pointers to the closest corresponding
energy level on each of the different nuclide grids.

Nuclides Tracked 355
Total # of Energy Gridpoints 4,012,565

Cross Section Interaction Types 5
Total Size of Cross Section Data Structures 5.6 GB

Table 1: XSBench Data Structure Summary

4. Access Patterns

In a full MC neutron transport application, the data structure
is accessed each time a macroscopic cross section needs to be
calculated. This happens anytime a particle changes energy (via
a collision) or crosses a material boundary within the reactor.
These macroscopic cross section calculations occur with very
high frequency in the MC transport algorithm, and the inputs
to them are effectively random. For the sake of simplicity,
XSBench was written ignoring the particle tracking aspect of
the MC neutron transport algorithm and instead isolates the
macroscopic cross section lookup kernel. This provides a large
reduction in program complexity while retaining similarly ran-
dom input conditions for the macroscopic cross section lookups
via the use of a random number generator.

In XSBench, each macroscopic cross section lookup consists
of two randomly sampled inputs: the neutron energy Ep, and
the material mp. Given these two inputs, a binary (log n) search
is done on the unionized energy grid for the given energy. Once
the correct entry is found on the unionized energy grid, the
material input is used to perform lookups from the nuclide
grids present in the material. Use of the unionized energy grid
means that binary searches are not required on each individual
nuclide grid. For each nuclide present in the material, the two
bounding nuclide grid points are found using the pointers from
the unionized energy grid and interpolated to give the exact
microscopic cross section at that point.

All calculated microscopic cross sections are then accumu-
lated (weighted by their atomic density in the given material),
which results in the macroscopic cross section for the material.
Algorithm 1 is an abbreviated summary of this calculation.

In theory, one could “pre-compute” all macroscopic cross
sections on the unionized energy grid for each material. This

Algorithm 1 Macroscopic Cross Section Lookup

1: R(mp, Ep) . randomly sample inputs
2: Locate Ep on Unionized Grid . binary search
3: for n ∈ mp do . for each nuclide in input material
4: σa ← n, Ep . lookup bounding micro xs’s
5: σb ← n, Ep + 1
6: σ← σa, σb . interpolate
7: Σ← Σ + ρn · σ . accumulate macro xs
8: end for

would allow the algorithm to run much faster, requiring far
fewer memory loads and far fewer floating point operations
per macroscopic cross section lookup. However, this would
assume a static distribution of nuclides within a material. In
practice, MC transport nuclide-depletion calculations are quasi-
static; they will need to track the burn-up of fuels and account
for heterogeneous temperature distributions within the reactor
itself. This means that concentrations are dynamic, rather than
static, therefore necessitating the use of the more versatile data
model deployed in OpenMC and XSBench.

We have verified that XSBench faithfully mimics the data
access patterns of the full MC application under a broad range
of conditions. The runtime of full-scale MC transport applica-
tions, such as OpenMC, is 85% composed of macroscopic cross
section lookups.(3) Within this process, XSBench is virtually
indistinguishable from OpenMC, as the same type and size of
data structure is used, with a similarly random access pattern
and a similar number of floating point operations occurring
between memory loads. Thus, performance analysis done with
XSBench provides results applicable to the full MC neutron
transport algorithm, while being far easier to implement, run,
and interpret.

III. Application

To investigate the performance bottlenecks of MC transport
methods on existing systems, we carried out a series of tests
using XSBench on single node, multi-core, shared memory
systems. The systems used were as follows:

• PC node consisting of two Intel Xeon E5-2650 octo-core
CPUs for a total of 16 physical CPUs. All tests, unless
otherwise noted, were run at 2.8 GHz using Intel Turbo
Boost.

• Single node of the IBM Blue Gene/Q (BG/Q) supercom-
puter Mira at Argonne National Laboratory consisting of
16 physical CPUs, which were run at 1.6 GHz.

We performed a scaling study to determine performance
improvements as additional cores were added. For both the
Xeon system and the BG/Q node, we ran XSBench with only
a single thread to determine a baseline performance against
which scaling can be measured. Then, further runs were done
to test each number of threads between 1 and 16. Scaling is
defined in Equation 1, where n is the number of cores, Rn is
the experimental calculation rate for n cores, and R1 is the
experimental calculation rate for 1 core.
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Scalingn =
Rn

R1 × n
(1)

The tests reveal that even for this idealized representation of
the key MC transport algorithm, perfect scaling was not achiev-
able. Figures 2 and 3 show that scaling degraded gradually
as more cores were used on the nodes. For the Xeon system,
scaling at 16 cores degraded to 69%. For the BG/Q system,
scaling at 16 cores degraded to 96%.
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Figure 2: XSBench Performance Scaling
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Figure 3: Percent of Ideal Scaling

One might reasonably conclude that 69% or 96% scaling
out to 16 cores is adequate speedup. However, next-generation
node architectures are likely to require up to thousand-way on-
node shared memory parallelism,(7)(8)(9)(10) and thus it is crucial
to ascertain the cause of the observed degradation and the
implications for greater levels of scalability. Considering nodes
with 32, 64, 128, or 1024 shared memory cores and beyond, it
cannot be taken for granted that performance will continue to
improve. We thus seek to identify to the greatest extent possible
which particular system resources are being exhausted, and how
quickly, so that designers of future hardware systems as well

as developers of future MC particle transport applications can
avoid bottlenecks.

High performance computing (HPC) applications generally
have several possible reasons for performance loss due to scal-
ing:

1. FLOP bound – A CPU can only perform so many floating
point operations per second.

2. Memory Bandwidth Bound – A finite amount of data can
be sent between DRAM and the CPU.

3. Memory Latency Bound – An operation on the CPU that
requires data be sent from the DRAM can take a long time
to arrive.

4. Inter-Node Communication Bound – Nodes working to-
gether on a problem may need to wait for data from other
nodes, incurring large latency and bandwidth costs. This
is not an issue for this application since we are focusing
only on single node, shared-memory parallelism.

Given these potential candidates for bottlenecks, we aim to
determine which exact subsystems are responsible for perfor-
mance degradation by performing a series of studies to identify
which specific resources our kernel exhausts first.

IV. Experiment & Results

To determine the cause of multi-core scaling degradation, we
performed a series of experiments. Each experiment involves
varying a system parameter, monitoring hardware usage using
performance counters, and/or altering a portion of the XSBench
code. The following section presents descriptions, results, and
preliminary conclusions for each experiment. For the purposes
of simplicity, we concentrate our analysis on the Intel Xeon
system described in section III. This allows us to get highly
in-depth results as we are able to run experiments dealing with
architecture-specific features and hardware counters.

1. Effect of Processor Speed

It is postulated that processors with faster clock speeds should
in general be more susceptible to memory latency and band-
width related bottlenecks. Faster processors are capable of
generating more read requests per second, resulting in a higher
potential for bandwidth usage. Furthermore, when a CPU
makes a read request from main memory, there is a large com-
ponent of latency that is independent of processor speed (e.g.
speed of light). If the processor is incapable of masking that
latency, or is only capable of pipelining a fixed number of read
requests, then the CPU will be forced to sit idle while the out-
standing read request is filled. The faster the processor, the
more CPU cycles will be wasted while waiting for outstanding
reads. Thus, simply slowing down the clock speed of a proces-
sor may reduce bandwidth requirements, improve scalability,
and potentially improve power efficiency.

From Figure 3, we can see that BG/Q scales much better
than Xeon. Given that BG/Q runs at 1.6 GHz, whereas the
Xeon node runs at 2.8 GHz, it would appear that processor
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speed may indeed have a correlation to scaling. To further
test this hypothesis, we disabled Turbo Boost on the Xeon
node, reducing the clock speed to 2.0 GHz and ran another set
of scaling tests. As shown in Figure 4 and Figure 5, scaling
improved from 69% at 2.8 GHz to 79% at 2.0 GHz.

0.0E+00	  

5.0E+05	  

1.0E+06	  

1.5E+06	  

2.0E+06	  

2.5E+06	  

0	   2	   4	   6	   8	   10	   12	   14	   16	  

Ca
lc
ul
a&

on
	  R
at
e	  
(X
S/
se
c)
	  

Cores	  

2.8	  GHz	  
2.0	  GHz	  

Figure 4: Xeon Performance Scaling for Various Clock Speeds
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Figure 5: Xeon % of Ideal Scaling for Various Clock Speeds

Figure 4 also shows that the calculation rate for 16 cores only
slowed down by 7% while the processor speed was reduced
by over 28%. A reduction in clock speed can result in a large
savings to the power budget for the node, as the CPU can be
run at a lower voltage, reducing power. Thus, a small sacrifice
in calculation time-to-completion results in both a) a higher
cycle efficiency and b) a significantly lower clock speed. These
effects combine to potentially reduce the total power cost of the
calculation.

2. Resource Usage

To better understand scaling degradation in our kernel, we im-
plemented performance counting features into the source code
of XSBench using the Performance Application Programming

Interface (PAPI).(11) This allowed us to select from a large va-
riety of performance counters (both preset and native to our
particular Xeon chips). We collected data for many counters,
including:

• ix86arch::LLC_REFERENCES - Last Level (L3) Cache
References

• ix86arch::LLC_MISSES - Last Level (L3) Cache Misses

• PAPI_TOT_CYC - Total CPU Cycles

• RESOURCE_STALLS:ANY - CPU cycles stalled for re-
sources for any reason

• RESOURCE_STALLS:RS - CPU cycles stalled because
there is no eligible entry in the Reservation Station (RS)

• PAPI_FP_INS - Floating point instructions

These raw performance counters allowed us to calculate
a number of composite metrics, including bandwidth usage,
FLOP utilization, cache miss rate, and identification of cycle
stall causation. Each of the metrics are discussed in the follow-
ing subsections.

2.1. Bandwidth & FLOPs

Two very important resources for any computer are the available
memory bandwidth and floating point capacity of the node.
Consumption of these resources is calculated for XSBench using
Equation 2 and Equation 3.

Bandwidth =
LLC_MISSES × Linesize

PAPI_TOT_CYC
× Clock (Hz) (2)

FLOPs =
PAPI_FP_INS

PAPI_TOT_CYC
× Clock (Hz) (3)

Using Equation 2, we collected the bandwidth usage for XS-
Bench as run on varying numbers of cores, as shown in Figure 6.
Note that the maximum theoretically available bandwidth for
the Xeon node is 51.2 GB/s.(12) Figure 6 shows that less than
half the available bandwidth is ever used by XSBench, even
when running at 16 cores per node.

There is, however, the question as to how much bandwidth
is realistically usable on any given system. Even a perfectly
constructed application that floods the memory system with
easy, predictable loads is unlikely to be able to use the full
system bandwidth. In order to determine what is actually usable
on our Xeon system, we ran the STREAM benchmark, which
measures “real world” bandwidth sustainable from ordinary
user programs.(13) Results from this benchmark are shown in
Figure 7, and compared to XSBench in Figure 8. At 16 cores,
STREAM only achieves 27.5 GB/s compared to XSBench’s 19.9
GB/s. Thus, XSBench is using a much higher percentage (72%)
of the realistically available bandwidth than was previously
assumed when comparing to the theoretical maximum of 51.2
GB/s.(12)

The other major system resource to consider is FLOP uti-
lization. Using Equation 3, we were able to determine that
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Figure 6: XSBench Bandwidth Usage Scaling
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Figure 7: Bandwidth Usage of the STREAM Benchmark

XSBench achieved at most 3.59 GFLOPs. Given that the Xeon
node is theoretically capable of 358 GFLOPs, XSBench only
uses about 1% of the system’s floating point capability.

A comprehensive plot of system resource utilization (band-
width and FLOP) is shown in Figure 9. As can be seen, XS-
Bench does not exhaust the system’s memory bandwidth or
floating point capability. Floating point provisions are not
stressed, and memory bandwidth only ever reaches roughly
40% of the theoretical maximum (72% of the experimental
maximum).

2.2. Cache Misses

Another important metric for application performance is the
last level cache (LLC) miss percentage. Modern CPUs, as used
in our Xeon node, rely heavily on caching to minimize the cost
of data loads and stores. Caches are split up into several levels,
each growing larger but also with significantly higher access
times. When the CPU makes a data read request, all levels of
cache are checked. If the data is not found in cache, then it
must be retrieved from main memory (DRAM) on the node.
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Figure 8: Bandwidth Usage: STREAM vs XSBench
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Figure 9: Bandwidth and FLOP Usage

Accessing main memory takes orders of magnitude longer than
accessing cache, meaning that applications with exceptionally
high cache miss rates are often slow, as CPUs are left sitting idle
as data arrives from main memory. Using PAPI performance
counters, we were able to calculate the last level (L3) cache
miss rates using Equation 4. We found that across all cores, for
any number of threads 1 through 16, the LLC miss rate was
65%.

Cache Miss % =
LLC_MISSES

LLC_REFERENCES
× 100 (4)

2.3. Resource Stalls

Figure 9 clearly shows that only a small fraction of the CPUs
floating point capabilities are being used. From this, it is obvi-
ous that CPUs spend a significant fraction of their time sitting
idle. PAPI provides counters that specify the precise reason for
such wasted cycles. We tested a number of available counters
to determine the primary cause of cycle stall. It turned out that
90-94% of cycles were spent stalled waiting for resources, and
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that this number was not dependent on the number of cores
being run on the chip. Using Equation 5, we found that 98%
of resource stalls were attributed to there being no eligible
reservation station (RS) entry available.

% Stalls in RS =
RESOURCE_STALLS:RS

RESOURCE_STALLS:ANY
× 100 (5)

The RS counter of the Xeon CPU reveals situations where
instructions are held while waiting for operands. When the
CPU is idle, it continuously checks the RS to determine if there
are any instructions that have the necessary operands to be
completed. There are a finite number of RS entries available
(36 in some Xeon chips).(14) From the Intel processor events
online manual:

This event counts the number of cycles when the
number of instructions in the pipeline waiting for
execution reaches the limit the processor can handle.
A high count of this event indicates that there are
long latency operations in the pipe (possibly load and
store operations that miss the L2 cache, or instruc-
tions dependent upon instructions further down the
pipeline that have yet to retire). In these situations
new instructions can not enter the reservation station
and start execution.(15)

Thus, given the virtually random nature of XSBench’s access
patterns and accompanying high cache miss rate (65%), increas-
ing the number of reservation stations would likely increase
single core calculation rates as more read requests could be
in-flight at any point in time.

3. Impact of Hardware Threads on Bandwidth Usage

Looking at Figure 6 and considering that the bandwidth usage
trend continues upwards towards the maximum, it is possible
to conclude that perhaps Xeon hardware threads (also known
as Hyper-Threads) may extend this scaling out to reach the full
capacity of the chip.

Hardware threading provides infrastructure to store data and
instructions from one thread while the CPU waits for outstand-
ing read requests to return from main memory while one or
more additional threads concurrently execute operations on the
CPU. The primary benefit of hardware threading is its ability
to mask the latency between the CPU and main memory. As
a result, applications that suffer from a high cycle stall rate
due to cache misses may benefit from use of hardware thread-
ing. The additional performance benefit of hardware threading
comes at the cost of only a small increase in die space without
significantly increasing the amount of power consumed.

Because XSBench experiences a high rate of cache misses
(65%), we tested XSBench on the Xeon Hyper-Thread cores by
running scaling studies to 32 threads. The usual performance
counter data was also collected. These results are summarized
in Figure 10, which shows marginal performance gains from
the use of hardware threads.

STREAM was also run on our Xeon node out to 32 threads to
test the Hyper-Thread cores. As shown in Figure 11, XSBench
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Figure 10: Impact of Hyper-Threading on Performance and
Bandwidth

uses 23.7 GB/s of bandwidth, which is extremely close to the
STREAM’s use of 25.8 GB/s. We find that we were able to
effectively reach the maximum practical bandwidth limit on
the system, as no real-world application can realistically expect
to attain a higher bandwidth than STREAM. Thus, we have
shown that when Hyper-Threading is enabled on our Xeon
node, XSBench becomes a bandwidth bottlenecked application.
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4. Effects of Additional FLOPs

We also studied the effects of increasing the FLOP to load ratio
by injecting “dummy” FLOPs every time a microscopic XS was
calculated in XSBench. These results are presented in Figure 12
and Figure 13. By comparing Figure 3 and Figure 13, we can
see that the scaling at 16 cores improves from 69% to 84% after
only 50 FLOPs have been added per load. This change suggests
that increasing the number of FLOPs per load gives the CPUs
more work to perform, thus spacing out the memory loads in
time, and therefore easing away from the memory bandwidth
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bottleneck.
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Since the MC particle transport algorithm benefits from ad-
ditional FLOPS, changes to the algorithm or its data structures
that accomplish useful work via extra FLOPs are highly benefi-
cial. There are several potential features that can accomplish
this task:

• On-the-fly Doppler broadening(16)(17) - This method ac-
counts for the material temperature dependence of cross
sections. In a full-scale reactor simulation, cross section
data needs to be stored for both varying neutron energy lev-
els and varying material temperatures. Doppler broaden-
ing removes the need to store temperature dependent cross
section data, instead only storing the 0 K data and comput-
ing data for other temperatures on-the-fly whenever data
requests are made. Addition of such Doppler broadening
techniques could allow for a significant amount of use-
ful FLOP work to be done between memory loads, while
also reducing the memory footprint and memory band-

width requirements, potentially improving scaling of the
calculation.

• Cross section data compression techniques - Methods can
be employed to reduce neutron energy dependent cross
section data into resonance regions. These methods also
greatly reduce the memory footprint and bandwidth re-
quirements of the algorithm, in exchange for a number of
FLOPs to be completed to “unpack” the resonance data
back into the required cross sections.

V. Conclusions

Using an extracted kernel to simplify the MC particle transport
algorithm, we have developed methodologies to identify and
possibly minimize performance bottlenecks. We have charac-
terized the scaling behavior of our kernel, and found that for
the chosen problem configuration only 69% of ideal scaling
is achievable on the Xeon platform. To determine the specific
reasons for this scaling degradation we performed the following
experiments:

1. Role of Processor Speed

2. Resource Usage

(a) Bandwidth & FLOP Usage

(b) Cache Miss Rate

(c) Resource Stalls

3. Impact of Hyper-Threading on Bandwidth Usage

4. Effects of Additional FLOPs

Through these experiments we were able to identify, at a low
level, why our kernel was not running faster or scaling better.

On a single core, the performance bottleneck can be isolated
to the reservation station (RS) queue of the CPU. Our data
showed that 98% of resource stalls were due to the RS being
filled – an impressively high number, given that resource stalls
account for over 90% of the CPU runtime. As RS stalls are
caused by high latency operations, such as cache misses, the
data suggests that increasing the size of the RS could allow for
more instructions to be queued at once, and therefore more data
to be in flight at any given time, thus increasing performance.

As more cores are added to the system, up to the 16 on our
node, performance scaling degrades to 69%. FLOP usage is at
less than 1% of capacity, and bandwidth usage is only at 72%
of the experimental maximum (as measured by the STREAM
benchmark). XSBench has not exhausted bandwidth or FLOP
resources, but rather latency hiding resources – namely the
number of entries in the RS. This bottleneck can be partially
reduced by decreasing the clock speed of the processor, which
improves scaling as well as the cycle efficiency of the calcu-
lation. This has the added result of potentially improving the
power efficiency of the calculation. This bottleneck can also
be mitigated by finding useful FLOP work to be done (e.g., on-
the-fly Doppler broadening) in order to reduce the frequency of
loads from main memory.
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Running XSBench with 32 threads on 16 cores, using Hyper-
Threading, we find that outstanding read request capacity has
been increased. Performance can continue to rise, all the way
up to 32 threads where memory bandwidth is exhausted. Here,
we find that XSBench uses 23.7 GB/s of bandwidth, which is
extremely close to the practicle maximum of 25.8 GB/s. At
this point, the MC particle transport algorithm becomes limited
by the available system bandwidth. Adding cores, hardware
threads, or improving other latency masking techniques will not
result in faster calculation rates; bandwidth must be increased
for performance to increase.

VI. Future Work

There are additional capabilities that do not yet exist in full-
scale MC neutron transport algorithms, such as on-the-fly
Doppler broadening to account for the material temperature
dependence of cross sections, that we plan on adding to XS-
Bench for experimentation with various hardware architectures
and features. Addition of such Doppler broadening techniques
could allow for a significant amount of useful FLOP work to
be done between memory loads, potentially improving scaling
of the calculation. Furthermore, we want to investigate cross
section data compression techniques, specifically by reducing
the data into resonance regions, in the hopes of quantifying
the trade offs (in terms of decreased DRAM memory footprint
and bandwidth vs. the increase in CPU FLOP requirements) of
such compression techniques.
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